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We study the diluted Ising ferromagnet on the Bethe lattice as a case study for the application of the cavity
method to problems with Griffiths-McCoy singularities. Specifically, we are able to make much progress at
infinite coupling where we compute, from the cavity method, the density of Lee-Yang zeros in the paramag-
netic Griffiths region as well as the properties of the phase transition to the ferromagnet. This phase transition
is itself of a Griffiths-McCoy character albeit with a power law distribution of cluster sizes.
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I. INTRODUCTION

The Bethe-Peierls or cavity method has a long history in
statistical mechanics [1]. The application of this method to
disordered systems has recently undergone a considerable
revival, mainly in connection with the analysis of typical
case complexity of random NP-complete [2] (i.e. difficult)
optimization problems. This recent work has led to an im-
proved understanding of the statistical mechanics of disor-
dered systems—in particular to a formulation of the physics
of replica symmetry breaking without resorting to replicas.
Importantly, it has also led to an efficient class of algorithms,
now known as survey propagation, for the optimization prob-
lems [3]. In addition, very recent work [4—6] has attempted
to generalize the cavity method/belief propagation to disor-
dered quantum systems, obtaining encouraging results.

The work alluded to above does not address one striking
feature of the physics of disordered systems, namely the
presence of Griffiths-McCoy (GM) singularities [7-9] in
their thermodynamics in an applied field. While the form of
these singularities can be readily determined from rough es-
timates of the statistics of the rare regions from which they
emanate, their detailed extraction can be a tricky task due to
their delicate nature, especially in classical systems [10]. In-
deed, in field theoretic formulations they appear as non-
perturbative (instanton) effects [11,12].

In this paper we consider the task of extracting these GM
singularities from the cavity method. The method is exact on
Bethe lattices and hence the functional recursion relation to
which it gives rise must contain GM physics which exists
already on these lattices. The challenge then, is to extract it
by constructing the appropriate fixed point solution. To this
end we study the particular case of a diluted ferromagnet on
the Bethe lattice which has an extended GM region at low
temperatures and large dilution. While the general, exact,
determination of GM singularities everywhere in the phase
diagram is a difficult problem, we are able to solve the prob-
lem in the infinite coupling limit made precise below. Here
we can directly solve the cavity equations in a field and
relate the solution to the statistics of clusters and to the den-
sity of Lee-Yang zeros commonly used to characterize GM
effects. Further, in this limit the phase transition between the
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paramagnet and the ferromagnet is itself essentially of a GM
character and its critical behavior, which we extract, can be
viewed as an enhanced GM phenomenon.

The problem of the dilute Bethe lattice ferromagnet and
of GM singularities has been considered before us [13,14] by
different methods. As our interest is primarily in the devel-
opment of the cavity method, we give a self-contained pre-
sentation in this paper from that viewpoint. We turn now to a
more detailed enumeration of the contents of this paper.

II. MODEL AND ORGANIZATION

We consider the following disordered Ising Hamiltonian
on the Bethe lattice with connectivity g:

,3H5=—J2 fijO'in—HE Ti, (1)
(ij) i

where

1 with probability p
Y7 |0 with probability 1 —p.

The random couplings €;; indicate the presence or absence of
a bond in the diluted Bethe lattice. For probability p<p,
=1/(g-1) the lattice has no giant clusters and the density of
large finite clusters decays exponentially. For p>p., giant
clusters exist with finite density and at the percolation tran-
sition, p=p,, the density of clusters of size n develops a long
algebraic tail W,~n=>? (independent of ¢) [15]. We note
that the dimensionless coupling constants J and H differ
from the conventional magnetic exchange and field by fac-
tors of inverse temperature S=1/7. The limit 7— 0 with J
> H will be denoted as the J=2 limit.

In Sec. III, we provide a guided tour of the well-known
phase diagram of this model from the point of view of the
cavity method. We then establish the critical behavior at the
phase transitions using a set of recursion relations for the
moments of the cavity field distribution. We also show that
the critical behavior can be extracted via a simple numerical
algorithm, which we discuss in some detail in the Appendix.

The following sections are devoted to investigating exact
analytic results in the infinite (dimensionless) spin-spin cou-
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FIG. 1. (Color online) Phase diagram for the diluted ferromag-
net on the connectivity g=3 Bethe lattice. The model is paramag-
netic (PM) for any coupling weaker than Jg. It is ferromagnetic
(FM) above the percolation transition (p.=1/2) for strong enough
couplings J.(p)=J; and there are essential singularities but no
spontaneous magnetization throughout the Griffiths-McCoy region
(GM).

pling limit, J=cc. This corresponds to the horizontal axis of
the phase diagram in Fig. 1. In Sec. IV, we find an explicit
expression for the magnetization M(H) by means of a sum
over connected clusters, which follows the standard GM
treatment due to [16]. In Sec. V we show that the same
expression can, in fact, be extracted from the cavity method.
In this limit, the magnetization goes to zero with the field for
p<p.=1/(g—1) while for p>p. a spontaneous magnetiza-
tion develops. We first show that: (i) for p<p, the
asymptotic series expansion for the magnetization contains
only integer powers M(H)=xH+c;H>+..., and (ii) on the
contrary at p=p,. the series expansion contains semi-integer
powers as well M(H)=c,,NH+c H+cy,H>?+.... That is,
the critical exponent 6=2 at p=p,, J=%.

In Sec. VI we develop an alternative integral representa-
tion for M(H) that corresponds to a harmonic expansion.
This representation will allow us to calculate the (smoothed)
density of Lee-Yang (LY) zeros p,,, at J= on the imaginary
H axis (=Im H) in Sec. VII and to show that for p<p, a
GM phenomenon indeed occurs, i.e., the density of zeros is
nonzero and vanishes as e~*? when approaching the origin.
For p= pewe find @=0 and the density vanishes as the power
law po /6.

Finally, the promised Appendix briefly describes the
“population dynamics” algorithm used in the numerical
work.

III. PHASE DIAGRAM AND CAVITY EQUATIONS

The p-J phase diagram (Fig. 1) of the diluted ferromagnet
‘H. is physically well understood and can be derived natu-
rally in a cavity method formalism [17,18]. In this approach,
one considers the flow of cavity fields from the boundaries of
the tree inward toward the center. A cavity field h; on a spin
o; at a distance d from the boundary describes the spin’s
magnetization in the absence of the link connecting it to the
next spin inward. The cavity field 4; only depends on the
cavity fields on o;’s neighbors at distance d—1 and therefore
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one can define a natural flow for the depth dependent distri-
bution of fields P9(h):

g-1 g-1
P9(n)=E, J (H dh,.P(d")(h,-)> 5<h = > ulh;+ H,Je,-)) ,

i=1 i=1
(2)

where
u(h; + H,J€;) = tanh™' (tanh(J€;)tanh(h; + H)) (3)

gives the bias on the field 4 due to a spin o; connected
through a link Je;. I, is the expectation with respect to the €;
distribution. Fixed point distributions P*)(h) describe the
statistical features of the bulk (central region) of the Bethe
lattice. In order to break the Ising symmetry, we will always
assume an infinitesimal uniform positive boundary field
PO(h)=8(h-07) as the starting point for the flow.

In the undiluted model, p=1, all of this discussion reduces
to the simple Bethe-Peierls mean field theory for a connec-
tivity ¢ lattice. Since there is no randomness, the cavity field
distributions P’ are simply delta functions located at, pos-
sibly depth dependent, fields ). Equation (2) reduces to a
flow equation for /1@:

q-1
B9 = u(h'“V + H,J)
i=1
= (¢ - tanh™' (tanh(J)tanh(2'9"V + H)). (4)

For J<J;=tanh™! q+l)’ the flow at H=0 has only one fixed
point A®)=0 corresponding to the paramagnetic phase. For
J>Jg, the h*™)=0 fixed point becomes unstable to a sponta-
neously magnetized ferromagnetic fixed point with 2> 0.
Expansion of the fixed point equation to leading order in H
and e=(J-J;) gives the well-known mean-field critical ex-

ponents at J=Jg:

M(H,J=Jg) ~H"?%, 6=3

MH=0,J>J5)~J-Jg5)P, B=1/2. (5)

Under dilution, we must return to the more general cavity
distribution flow defined by equation (2) to extract the phase
behavior. Notice that the paramagnetic cavity distribution
PPM(h)=58(h) is always a fixed point of the flow at H=0, just
like A9=0 is always a solution for the undiluted model. As
in undiluted case, this fixed point will become unstable
above some critical coupling J,(p). Near PPM(h) (i.e., for
small &), we consider the linear stability of the first moment
of P9 (h):

q-1 !
YD =T, f dh( 11 dhiP(”"l)(hi)) 5(h -2 u;>h
i=1

i=1

q-1 q-1
=EeJ (H dhiP(d“)(hi))E u(h;,Je;)
i=1 i=1

~(q - 1)(E tanh(J))(n)*",

to leading order. Thus, 1=(g—1)p tanh(J.(p)) gives the criti-
cal boundary separating a stable paramagnetic phase from
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the ferromagnetic phase. A small rearrangement gives

J.(p) = tanh™" (’;-) : 6)

This agrees precisely with the undiluted critical point J.(p
=1)=J; found above and also predicts that for p<<p, the
paramagnetic phase persists for all finite J. There is no fer-
romagnetic phase transition for a model with only finite clus-
ters, as one expects.

In order to extract the critical behavior along the diluted
phase boundary, we wish to expand the fixed point equations
near the critical solution as we did in the discussion of the
undiluted model. Rather than working with Eq. (2) directly, it
is more natural to use an equivalent infinite set of recursion
relations for the moments of P(h). These can be derived by
multiplying both sides of Eq. (2) by 4" and integrating or by
considering the relation on random variables

q-1
D= € tanh_l(tanh(J)tanh(hgd_l)))

i=1

taken to the power n and averaged. Near PPM(1), we expand
this relation around small A;:

g-1 1
n=>, ei7<h,-—§(1—72)h?)+ e (7)
i=1

where 7=tanhJ and we have suppressed the depth super-
scripts.

Sufficiently near the phase boundary, we expect the mo-
ments (h") to decrease exponentially with n and thus only a
few leading order moments need be retained to extract the
leading critical behavior at finite J. Taking powers of Eq. (7)
and averaging, we find

=27t~ Spri1 ~ PR,

(%) = 2p7H%) + 2p° 7(h)?,

(n") = 2pT() + 6p* T (h)(1?),

to cubic order. We have specialized to the case g=3 in order
to simplify the presentation; for ¢ >3 an additional term at
cubic order is generated but the critical exponents remain the
same.

Near the phase boundary in the p-J plane, we can define a
small parameter € by writing 2p7= i tanh J=1+e€. We will
treat the fixed point equations to leading order in the € ex-
pansion. For e<0 the only real solution is paramagnetic:

(hy=(h?)=(n’) =0. (8)

This solution is stable since its local Lyapunov exponents
(e,e=In lT,e—Z In lT) are all negative.

For €>0 this solution becomes unstable. We find two
other ferromagnetically ordered solutions, which are linked
by the symmetry 7 — —h, and choose the positive one. This is

1-
(hy=2—€"?4 .-,
T
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FIG. 2. (Color online) Lyapunov exponents of the ferromagnetic
fixed point of the iteration equations for J=1. Notice that for €
<0.13... they are all negative, signaling stability of the solution. At
larger €, the stationary point becomes a focus before eventually
becoming unstable.
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One can find the Lyapunov exponents of this stationary point
analytically but the expressions are unenlightening. We plot a
typical case in Fig. 2. Notice that the results (9) are consis-
tent with the assumption that (") decreases exponentially
with n.

From Eq. (9) one can read off the critical exponent B
=1/2 as the power of € in (h)~m. This is valid for all 7
<1 and sufficiently small €. The point 7=1 (J=°) is differ-
ent and needs to be treated more carefully. As 7—1 the
coefficient of €2 in Eq. (9) vanishes, which implies that the
J=00 critical exponent B’ >1/2 while the divergence of the
coefficient of €2 means that 8’ <3/2. Indeed, from the ex-
act solution of Sec. IV, we will find B'=1.

For sufficiently large €> €., the Lyapunov exponents be-
come positive, signaling a loss of stability of the third order
ferromagnetic solution [for the value J=1, 7=tanh(1) in Fig.
2, €.=0.137...]. This indicates that the first few moments
flow to large scale and our truncation to cubic order fails.
The value of €. decreases monotonically as 7 approaches 1
and to accurately find the fixed points we need to keep track
of more moments of & in our iteration equations. At this
point it is convenient to switch to numerical solution of the
full cavity equation (2) by population dynamics, as described
in the Appendix.

Having explored both above and below the critical point,
we return briefly to the critical point at e=0. Here, at linear
order, there is a marginal flow near the paramagnetic fixed
point. It is possible to analyze the truncated flow equations
(8) at higher order to discover that the paramagnetic solution
is indeed algebraically (rather than exponentially) stable, as
one expects of a second order phase transition. With some
additional algebra it is possible to carry a small applied field
H through all of the above arguments at e=0 and show that
the critical exponent d=3 all along the p > p. phase bound-
ary.
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The final important feature of the phase diagram is the
presence of GM singularities throughout the p<1, J>J;
region. That is, the density of LY zeros on the imaginary H
axis of the partition function has an essential singularity like
¢=@"™ H throughout this region due to the cumulative influ-
ence of rare large undiluted regions and there is therefore no
gap. Equivalently, the real magnetization M~ e¢~¥" in a real
applied field H. Although this can be seen from elementary
rigorous arguments [7,8], it is difficult to detect either ana-
Iytically or numerically at finite J. However in Secs. VI and
VII we will use the exact solution of the cavity equations at
J=% to exhibit these essential singularities explicitly and
subject them to detailed study.

IV. CLUSTER SERIES AT J=«

For the remainder of the paper, we will focus primarily on
the J=% part, of the phase diagram of the model. We first
review the classic argument due to Harris [16] based on an
expansion over connected clusters. This will lead to an exact
series expansion for M(H) that we will independently red-
erive using the cavity approach in Sec. V.

Consider a cluster of n+1 spins connected by n bonds.
For J>H~1 (which is the meaning of the J=c° limit) each
connected cluster behaves like a piece of ferromagnet. In-
deed for H=0 there are two degenerate ground states, one
with all spins pointing up and one with all spins pointing
down. The first excited states are spin flips at energy ~J
above the ground states and their presence is negligible.
Turning on a magnetic field H the degeneracy is broken and
(if H is positive, say) the state with all spins pointing up is
energetically preferred. Therefore the cluster will acquire a
small magnetization:

M, (H) = (n+ 1)tanh((n + 1)H). (10)

The total magnetization per spin is obtained by summing
over all the clusters with their weights W,,, corresponding to
the number of clusters of size n per spin [19]

M(H) = X, W,M,(H). (11)

n=0

This equation has been studied before and results can be
found in [16] for the magnetization, and [20] for the scaling
law of the magnetization at the critical point. We will repro-
duce those results on the magnetization for completeness, but
the main focus of this paper will be the density of Lee-Yang
zeros and the solution of cavity field equations from which
we will recover the known results.

From the solution of the bond percolation problem on the
Bethe lattice [ 15] the number per spin W, of clusters of bond
size n is given by

(n+1)(g-1))!
(4 Dlg -2+t
For simplicity, we consider g=3 in the following as all of the
essential physics are already present. We can easily obtain

the asymptotic behavior of the magnetization by using the
asymptotics of W, as

W) =g (1= pya,

PHYSICAL REVIEW E 77, 061139 (2008)

12 1 52
an_—(l_p)3<_> e AP, (12)
N n
where

A(p)=In (13)

1
4p(1-p)’
A(p) is the exponent governing the decay rate of the cluster
sizes and it will appear often in the remainder of the paper.
For p<p.=1/2, A>0 and W, decreases exponentially. For
p=p.. A=0 and we have instead a power-law decay with
exponent 5/2 (the exponent is independent of g):

5/2
(1) »

2 \'/7_7 n

This change in the asymptotic fall off of the cluster distribu-
tion at criticality is the reason for the change in the response
to an applied external field at zero temperature.

Indeed we can easily see how this works. For A>0 and
small H we can write an asymptotic expansion by expanding
the tanh in the sum (11):

M(H) = >, W,(n+ 1)tanh((n + 1)H)

=H{(n+ 1>+ OH)

1+p
1-2p

=H

+O(H%), (15)

which is linear in H. At the percolation threshold, however,
A=0 and (n?) diverges. The expansion of tanh inside the first
sum is unjustified. To find the first term in the asymptotic
expansion of M (that we will derive in a formally correct
way in Sec. VI) we use instead Eq. (12):

3 1 32
M(H) = 2 2\—/7—7_(;) tanh(nH)

3 —("
= —r\’Hf dxx~*? tanh x + O(H). (16)
2N 0

So the susceptibility diverges although there is no spontane-
ous magnetization [16]. We now turn to a derivation of the
above results from the cavity method.

V. CAVITY APPROACH AT J=

The cavity method for this system gives a probability dis-
tribution for the cavity fields which satisfies the fixed point
equation [cf. Eq. (2)],

g-1 g-1
Ph) =K, | I1 dhiP(h,-)5(h = > ulh;+ H,Je,-)) . (17)

i=1 i=1
In the J— <0 limit, we can linearize the cavity biases u:
u(h+H,Jg) = (h+ H)e;. (18)

At g=3, the fixed-point equation (17) becomes
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P(h) = (1 -p)*8(h) +2p(1 - p)P(h — H)
+p? f dh>P(hy — 2H)P(h — h,).

This equation can be solved by defining the Laplace trans-
form

g(s) = J ) dhP(h)e™",
0~

making sure to include the delta function at 2=0. The equa-
tion for g is quadratic

0=pZe>Hg(s)>+ (2p(1 - p)e™ = 1)g(s) + (1 = p)*,
(19)
with solution
_—
eZHs _ zeHs(p _pZ) _ e3HS/2\"€HS _ 4(p _p2)
(2p°)

g(s) =

(20)

The second solution to Eq. (19) is not physical. Even without
inverting the Laplace transform all the properties of the so-
lution can be extracted from g(s). For example the normal-
ization condition, the zeroth moment, is

" 1 ifp<1/2
dhP(h) =g(0) =1 (1 -p)?
fo (h)=5(0) # if p>1/2,
and the first moment is
Jg 2Hp
== = @)
s |9 1-2p

whose divergence at p=p,=1/2 signals the ferromagnetic
phase transition. For p>p., P(h) loses normalization be-
cause a finite fraction of the cavity fields flow to infinity, just
as in a percolating cluster distribution. Indeed, the divergent
cavity fields are precisely those attached to spins in percolat-
ing clusters. Because these spins are connected to the posi-
tively biased boundary and the temperature is effectively
zero, they spontaneously magnetize to M =1=tanh(). This
provides the spontaneous magnetization critical exponent:

1 - 2
M(H=07=.p)= 1~ =2
P

“(p-p,)

from which we read B'=1 in accord with the discussion
following Eq. (9).

We now concentrate on the p<p,.=1/2 region at finite H.
Consider the magnetization per spin

q
M(H) = tanh(H + > ulh;+ H,Je,.)) . (22
€h

i=1

which is obtained by averaging over the disorder and the
distribution of A. It is straightforward to show that for small
h and H we obtain the results of Eq. (15). Indeed:
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MH) =\ H+ >, e(h;+H)

i=1 €h

+O(H) (23)

=(1+3p)H + 3ph) + O(H?). (24)
Now substitute Eq. (21) and simplify
1
M(H) = Hﬂ +O(H%), (25)
1-2p

in accordance with Eq. (15).
We now reconstruct the full probability distribution P(h)
exactly. We expand the function g(s) as a series in e™*#

g(s)= 2 e (26)
n=0
which defines the coefficients «,. P(h) is now given by the
inverse Laplace transform,
P(h)= >, a,8(h—nH). (27)

n=0

The «,, are given by the series expansion of the square root in
Eq. (20):

o (4p(1-p))™> (= D)™'T(3/2)
" 2p? TFn+3)I(-=n-1/2)"

(28)

That is, P(h) is a comb of delta functions at integer multiples
of H with a decaying envelope. The large n behavior of the
envelope is

4(1 - p)?
a, = %n_3/26_*‘(”)"+ e (29)
N

where A(p) is defined in Eq. (13). It is not surprising that the
same asymptotics governs both P(h) and W,

Finally, to connect directly with the previous section let us
compute the exact magnetization of a spin as a function of
applied field H. Evaluating the cavity magnetization equation
(22) using the cavity field distribution (27), we find

©

q
M(H):E (;])p/(l - p)? E aml-“am,tanh((j+1
j=0 !

ml,“',mj:O
+my+ -+ +m;)H) (30)

which naturally expands as a series in tanh nH. At g=3, we
can evaluate all the coefficients in this series to find that
indeed they are identical to the coefficients nW,_; of Eq.
(11). Thus, at J= the cluster series and the cavity method
produce identical results for the magnetization.

Having established the equivalence of the two solutions,
we now return to the analysis of the series for the magneti-
zation. In the following two sections we will extract the criti-
cal behavior near p=p. and, by analytic continuation to
imaginary H, the GM singularity in the density of LY zeros.

VI. AN INTEGRAL REPRESENTATION
FOR THE MAGNETIZATION

Despite its simplicity, the expansion of Eq. (11) is an ex-
act result for the magnetization which can be analytically
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continued to imaginary values of the magnetic field. How-
ever, the representation of M(H) as a sum in Eq. (11) is not
best suited for this purpose. An integral representation would
be preferable. To obtain it we write the Laplace transform of
the function tanh x

e a4 f5)

(31)

where ¢ is the digamma function. The function f(s) has
simple poles only at the negative even integers and thus we
can invert the transform and write

tanhx:f
B 2T

d
Sl.e”f(s), (32)

where B is any Bromwich path lying to the right of all poles
of f(s), that is to the right of the negative real axis. Inserting
into Eq. (11), we can invert sum and integral, provided

l4p(1 = p)et| < 1. (33)

The resulting expression, valid for |arg H| < /2,

Ly 2l 2n+ 1)

a=o (n+ 3)'n‘

s(n+1)H

M(H)=3(1 —p)3f
X(p(1-p))"

can be written in closed form by performing the sum. This
amounts to calculating the derivative of the generating func-
tion of the probability W,. For the Bethe lattice the generat-
ing function is [21]

Px)= > Wax"=-2(1-p)3x3(8(1 - ng)
n=0
+402\1 - £-3)é+38), (34)

where £=4p(1-p)x has been defined for convenience. By
means of this function we can perform the sum inside the
integral to obtain

3
= 0P f 5 e M Ip(1 = pe— 1]

6p°(1-p) )y 2im
—
XN1=4p(1=p)e+1-3p(1 - p)et}. (35)

We simplify this expression by considering the analytic
structure of the integrand (see Fig. 3). The function f(s)
has simple poles at the non-positive even integers
(0,-2,-4,...), while the rational expression has a series of
square root cuts at s:=&§z+i2wn/ H. We close the contour
with a semicircle at infinity on the right (for Re s>0) on the
first Riemann sheet. We then deform the contour to coincide
with the edges of the cuts. At this point only the discontinu-
ity across the cuts contributes to the final result. For aesthetic
reasons we finally shift the value of s by &15_'2, the real part of
the origins of the cuts.

The resulting expression is
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S

FIG. 3. Analytic structure of integrand of Eq. (35). The function
f(s) has simple poles at nonpositive even integers while the rational
expression has square root cuts at s * 2 Alp)2min hich we connect to
infinity at the right. B labels the undeformed Bromwich path.

M(H) =

E f dsf(s+s )

n=—cw

l —
Xe'25H<1 - e )\'eeH 1. (36)

At this point it seems we have traded a sum of functions (16)
with a series of integrals that we cannot evaluate. This looks
like a step backward in the quest for a useful result. How-
ever, after thinking about the procedure we have performed,
we recognize that this is a Poisson summation like duality on
the original equation (11). The terms in the sum are higher
and higher harmonics of the result (this is particularly evi-
dent, as we will see shortly, for imaginary H).

The series in n in Eq. (36) is dual to the series in Eq. (11)
so that when the first converges rapidly the second does not
and vice versa (for H on the real axis). In the interesting
regime, close to the percolation threshold (11) converges
slowly and the first term (2=0) of Eq. (36) gives the leading
term in the expansion in (p—p.) and H— 0.

Let us now see how we can recover Eq. (16) in a clean
way. At the critical point p=1/2, we have A=0 and so s:
=i2mn/H. For H—0 all the cuts except that corresponding
to n=0 go to infinity and we can keep only the n=0 term in
the series (36). Moreover, by expanding the integrand in
powers of H we find

M(H) ~ %\ﬂlﬁf dS\“”;f(s) + O(H)
0

3 —\m (*
=— \Eﬂ dx x73% tanh x + O(H)
o 2 0

which coincides with Eq. (16).

To recapitulate, the magnetization is given by an integral
of the discontinuous part of the generating function ¢ of the
cluster distribution W, with the Laplace transform of the
function tanh x. For the Bethe lattice the generating function
can be written explicitly and the calculations can be carried
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FIG. 4. (Color online) The density of Lee-Yang zeros as a func-
tion of the imaginary field 6 at p=1/4. The upward bending smooth
curve (red) is the smoothed p,,; the oscillatory curve (orange) is the
sum of the first three harmonics in Eq. (36) (terms n
==*1,*2,*3) and the downward bending smooth curve (blue) is
—pgn- The figure suggests (in agreement with the discussion in the
text) that the sum of all the harmonics (with 7 # 0) builds a sum of
delta functions Eq. (37) minus p,,, in Eq. (40).

to the end. In the percolation limit the cut on the real axis
gives the greatest contribution to the sum.

VII. DENSITY OF LEE-YANG ZEROS AT J=

In this section we will find the density of Lee-Yang zeros
p at J=o. These are the zeros of the partition function as a
function of the external magnetic field H, for imaginary H
=i6. Instead of solving the equation Z(H)=0 directly, we rely
on the relation [13]

1
p(6) = —Re M(i6+0%).
T

To get an idea of how this function looks we recall

Re tanh(i6+0%) = 7 > 5(9— 72—7(2m + 1)).

m=—w

Substituting this into Eq. (15), we find

p(O)=> > W,(n+ 1)5<(n +1)6- §(2m+ 1))

m n=0
2m+1
=D W8 60— , (37)
. 2n+2
odd

so the zeros are located at all the - rational multiples of ,
with multiplicities given by the W,’s [22]. This is a singular
distribution with an accumulation point at #=0: our task is
now to smooth it by using the Poisson-dual integral repre-
sentation (36) obtained in the previous section.

For imaginary H, the expansion over the cuts becomes an
harmonic expansion (see Fig. 4) of p. Selecting the term with
n=0 in Eq. (36), gives the function smoothed to the lowest
degree:
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FIG. 5. (Color online) The density of Lee-Yang zeros as a func-
tion of the imaginary field 6 at p=1/10 (above) and at criticality
p=1/2 (below).

8(1 - p)? f“ _< 1 )
0) = ds\/ SO _ 11=- 56| ,—2s6
Psm(6) 2, ), e 2¢)e

XIm f(—is — iA(p)/ 6+ 0%). (38)

This expression simplifies since from the definition of f

Im f(-iz+0%) = f‘” dx sin(zx)tanh x = L.
0 2 sinh z/2

(39)
So we find the smoothed density of LY zeros
41-p) [*  —— 1
Psm(6) = Q‘[ ds\et? - 1(1 - —esﬂ)
P 0 4
—2s56
—2° (40)
T
sinh(g(s +A0)>

The different profiles for this density can be seen in Fig.
5. Here the GM phenomenon is evident: even at p<<p,
=1/2, pyn(6) is strictly positive for any nonzero 6; there is
no gap in the distribution. This effect is due to the presence
of rare large clusters. The asymptotic expansion of the den-
sity at small @ can be found by expanding the integrand to
leading order in 6:
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41-p)? (*  —[3 1
p(e) ~ MJ‘ dS\”SG(—)—
mp 0 4

le(’ﬂ/2)se(ﬁ/2)A/0

_3\2(1-p)’
41p

This expansion is uniformly valid at the point A=0, which is
p=p., where it shows the critical square root cusp in the
magnetization. However, let us remark that Eq. (40) is the
smoothed part (in the sense of distributions) for all values of
6 and not only for small 6.

Let us now make a few qualitative remarks on the
asymptotic expansions for M(H) and p which apply in prin-
ciple to all lattices. From the integral representation (35) (see
Fig. 3) we observe that there is no Stokes phenomenon for
Re H>0. That is, the asymptotic approximation for M(H),
Eq. (15) to higher order,

L
M (H) = 2 a H* (n+ )2+ O (42)
k=0

V@e—(w/Z)A/H. (41)

(where a;’s are the coefficients in the series expansion for
tanh x) is valid for all |arg H| < /2.

Naively, substituting H=i6+0* term by term into this ex-
pansion, we obtain a purely imaginary result for any L. Since
M, (H) is odd, we might speculate that p=0. However, the
expansion (42) is only asymptotic, since {(n+1)%)~ kle™*A,
This means that we cannot take L — % but must instead trun-
cate the series at the L~ H/.A where the remainder is small-
est. The remainder is never actually zero but it is exponen-
tially small in 1/|H|. A good quantitave approximation can
be found by using the “terminant”[23] of the asymptotic ex-
pansion. The terminant is indeed e~V and it is not purely
imaginary for H=i6+0"%. Thus, as a general rule we expect
the real part of the terminant of the asymptotic expansion of
M(H) represents the density of LY zeros in the subcritical
region.

VIII. SUMMARY

The diluted Ising ferromagnet on a Bethe lattice is a trac-
table model that beautifully illustrates many of the key
physical features of short-ranged disordered systems. In this
paper, we have attempted to present a unified analysis of the
model in the framework of the cavity method, from which
we derive both well-known elementary results about its
phases and nontrivial features such as GM singularities and
the infinite coupling critical exponents.

In particular, the ferromagnetic phase boundary lies in the
mean-field universality class (6=3) at any dilution above the
percolation threshold. At this threshold however, the ferro-
magnetic critical coupling diverges (J— ) and our closed
form solutions for the cavity distributions in this limit reveal
that the critical behavior is governed by the percolation of
the underlying lattice (6=2). Linear stability analysis of the
flow of the cavity moments near criticality naturally reveals
the Lyapunov exponents and the associated correlation depth
of the stable phases.
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Furthermore, at infinite coupling we have explicitly ex-
hibited the essential Griffiths-McCoy singularities in the
magnetization for all p<p,, where there is no spontaneous
magnetization. By an harmonic resummation of the exact
magnetization, we found the smoothed density of LY zeros
exactly and conjectured its relation to the real part of an
appropriate terminant of the asymptotic series for the mag-
netization.

ACKNOWLEDGMENTS

The authors would like to thank M. Aizenmann for dis-
cussions and for catching an error in an earlier version of the
draft. C.L. and A.S. would like to thank S. Franz and R.
Zecchina for discussions and A. S. would like to thank G.
Marmo for discussions and acknowledges support from the
MECENAS program of the Universita’ Federico II di Napoli,
where part of this work was completed. C.L. acknowledges
support from the NSF. The work of S.L.S. is supported by
the NSF Grant No. DMR 0213706.

APPENDIX: NUMERICAL METHODS

In the cavity framework, all of the statistical observables
of a model can be derived from the cavity field distribution
P(h). This distribution is the fixed point of the flow of the
cavity equation (2). While we can solve this equation ana-
lytically in certain limits, we rely on a simple iterative nu-
merical algorithm called population dynamics for many of
the finite coupling results. Population dynamics and its more
sophisticated variants appear in, for example, [24].

The algorithm works as follows: we represent the distri-
bution P(h) by a finite population of N,,, fields &;. This
population is initialized from an appropriate uniform distri-
bution and then iterated as follows:

(i) Select g—1 fields h; randomly from the population and
g—1 random ¢,

(ii) Use Eq. (2) to calculate the cavity field &, on a spin
sitting below the g—1 spins selected above.

(iii) Randomly replace one element of the population with
hO.

(iv) Repeat until convergence in some measure of the
population, for example the cavity magnetization (tanh(h)).

100 ="

N — P(h) x h— 15

101 ~ — Fit exponent ~ —1.46
= sl ]
— 107=
Q

1073 F E

10~ il i ——

10° 10" 10? 10°

h

FIG. 6. (Color online) Cavity field distribution at p=0.5, J=0©
critical point with H=1. This log-log plot shows agreement with the
asymptotic form P(h)~h~3? found in the exact solution.
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FIG. 7. (Color online) Cavity field distributions as function of p
near the p=0.75, J=0.80 critical point at small applied field H
~107*. The solid (blue) curve is in the paramagnetic regime, the
dashed (green) is in the critical phase and the dot dashed (red) in the
ferromagnetic one. Notice the dramatic increase in the response of
the cavity field distribution to the applied field on the ferromagnetic
side of the phase boundary.

In practice, this procedure converges quickly, deep in ei-
ther the ferromagnetic or paramagnetic phase, but slows near
the phase transition. We illustrate some typical results below
for g=3.

Even at the percolating critical point, when the expected
cavity distribution develops a long tail and divergent mo-
ments, this procedure works. Figure 6 shows the numerically
determined cavity field distribution for the p=0.5, J=% criti-
cal point with applied field H=1. As noted in Sec. V, the
exact solution is a comb of delta functions at h=nH, n € N
with weights decaying asymptotically as a power law «,
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FIG. 8. (Color online) Critical magnetization in an external field
along the /== line. The slope of the log-log curves indicates the
critical exponent & associated with each of the four points p
=0.25,0.5,0.75,1 along the phase boundary. We find =1 for p
=0.25<p.=0.5, 6=2 for p=0.5 and =3 for p=0.75 and 1.

~n~3'2. The numerical solution concentrates on integer fields
with a power-law tail consistent with the exponent —1.5.

In general, the form of the cavity field distribution at finite
p and J is only obtainable numerically. Figure 7 shows the
numerically determined distribution at small applied field H
on three different points in the p—J plane near the p=0.75,
J=0.80 critical point. These distributions are typical and il-
lustrate the dramatic increase in susceptibility on the ferro-
magnetic side of the phase boundary.

Finally, Fig. 8 confirms numerically the critical exponents
derived using the moment flow analysis of Sec. III and the
exact solution of Sec. IV.
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